If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+4t=48
We move all terms to the left:
4t^2+4t-(48)=0
a = 4; b = 4; c = -48;
Δ = b2-4ac
Δ = 42-4·4·(-48)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-28}{2*4}=\frac{-32}{8} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+28}{2*4}=\frac{24}{8} =3 $
| 41=6-7y | | x+x+5+x+7=42 | | a/10-1=9 | | 7/8a+16=9 | | 2x-5x=6*2 | | 12a+12a+16+10-4=102 | | 2/7v-8=-1 | | 88=8(n+3 | | 30=3q^2-16q+24 | | 12a+24a+16+10a-4=102 | | 19+19x=13.3 | | 16+1/6m=14 | | 1/8w-0.875=5 | | (x-10)+100=0 | | 6(x+8)=-30 | | 35=6w+18 | | 3/4t+9=3 | | 7x+9=5x | | x+81=262= | | 7+1/2z=-13 | | 15+4m+8=21 | | x-13=108= | | 49+c=24 | | 9x+(138-6x)=189 | | 68+b=24 | | 7c+3-5c=27 | | n-4/2=-13 | | 7x-11=5(x/2 | | 2/5w-3=6 | | 75+a=24 | | 13+10x=153= | | r-15=17 |